Bits and Pieces for Approximate Spatial Mapping

K. A. Flagg

26 September 2019

Diagram of a simplex

Diagram of a simplex


\[ (\kappa^{2} - \Delta)^{\alpha / 2} (\tau Z(\mathbf{s})) = W(\mathbf{s}) \]


Diagram of a simplex


\[ (\kappa^{2} - \Delta)^{\alpha / 2} (\tau Z(\mathbf{s})) = W(\mathbf{s}) \]


Joey Tribiani saying how you doin’?

Cartoon of a tank aiming at a target.

Cartoon of a tank firing an explosive sheel at a target.

Cartoon of a tank firing a dud shell at a tank.

  • Point process intensity
    • \(\lambda(\mathbf{s})\) events per acre
  • Model
    • \(\log\lambda(\mathbf{s}) = \mu + Z(\mathbf{s})\)
    • \(Z(\mathbf{s})\) spatial Gaussian process
  • Log-Gaussian Cox process (LGCP)

  • Random continuous function
    • \(Z(\mathbf{s})\) a Gaussian random variable
    • Mean 0
    • Matèrn covariance function

  • INLA: Integrated Nested Laplace Approximation (Rue, Martino, and Chopin 2009)
  • Bayesian Hierarchical models
    • Many latent Gaussian variables
    • Few parameters
    • E.g. spatial prediction using Gaussian process model

  • Laplace approximation in general
    • \(\int \exp[h(x)]\mathrm{d}x\)
    • Taylor expansion of \(h(x)\)

  • Laplace approximation for likelihood
    • \(L(\boldsymbol{\theta}) = \exp[\ell(\boldsymbol{\theta})]\)
    • Taylor expansion of \(\ell(\boldsymbol{\theta})\)

  • Example from Blangiardo and Cameletti (2015) section 4.9
    • \(\mathbf{y} = (y_{1}, \dots, y_{n})'\) independent Gaussian observations
    • \(y_{i} \sim \mathsf{N}(\theta, \sigma^{2})\)
    • \(\theta \sim \mathsf{N}(\mu_{0}, \sigma_{0}^{2})\)
    • \(\psi = 1/\sigma^{2}\), \(\psi \sim \mathrm{Gamma}(a, b)\)

  • The posterior distribution of \(\psi\) \[p(\psi|\mathbf{y}) \propto \frac{p(\mathbf{y} | \theta, \psi) p(\theta) p(\psi)} {p(\theta | \psi, \mathbf{y})}\]

  • Laplace approximation \[\tilde{p}(\psi|\mathbf{y}) \propto \frac{p(\mathbf{y} | \theta, \psi) p(\theta) p(\psi)} {\tilde{p}_{G}(\theta^{*} | \psi, \mathbf{y})}\]

  • Repeat for \(\theta\)
  • Will depend on \(\psi\)

  • Priors: \(\mu_{0} = -3\), \(\sigma_{0}^{2} = 4\), \(a = 1.6\), \(b = 0.4\)
  • 30 observed points

  • INLA package for R
  • Provides marginal posterior
    • Not joint posterior

Image of a rotund raccoon.

\[ (\kappa^{2} - \Delta)^{\alpha / 2} (\tau Z(\mathbf{s})) = W(\mathbf{s}) \]

Plot of a random surface in three dimensions.

Screenshot of 3D modeling software showing a model of a car.

  • SPDE approach (Lindgren, Rue, and Lindström 2011)
    • \((\kappa^{2} - \Delta)^{\alpha / 2} (\tau Z(\mathbf{s})) = W(\mathbf{s})\)
    • Choose nodes \(\mathbf{s}_{i}\) to model \(Z(\mathbf{s}_{i})\)
    • Build a triangular mesh
    • Autoregressive model on the nodes

\(\phantom{x + y + z = 1}\qquad x + y + z = 1\)

Diagram of a point in a triangle.Diagram of a simplex.

\[ f(\mathbf{s}) \approx \alpha f(1, 0, 0) + \beta f(0, 1, 0) + \gamma f(0, 0, 1) \]

References

Blangiardo, Marta, and Michela Cameletti. 2015. Spatial and Spatio-Temporal Bayesian Models with R-INLA. Wiley.

Lindgren, Finn, Håvard Rue, and Johan Lindström. 2011. “An Explicit Link Between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (4): 423–98.

Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71 (2): 319–92.